38 resultados para biological control

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The invasion and infectivity of Meloidogyne javanica juveniles (J2) encumbered with spore of Pasteuria Penetrans were influenced by the temperature and the time J2 were in the soil before exposure to roots. The percentage of infected females decreased as the time juveniles spent in soil increased. When spore encumbered J2 were maintained at 30 degrees C the decrease in infection was greater than that at 18 degrees C. The thermal time requirements and the base temperature for P. penetrans development were estimated. The rate of development followed an exponential curve between 21 and 36 degrees C and the base temperature for development was estimated by extrapolation to be 18.5 degrees C. The effect of integrating a nematode resistant tomato cultivar with the biocontrol agent P. penetrans also was investigated. The ability of the biocontrol agent to reduce numbers of root-knot nematodes was dependent on the densities of the nematode and P. penetrans spores in the soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biocontrol agents such as Xeiwrhabduf, nemalophilci and X. nematophila ssp. bovienii and their cell-free protein toxin complexes were lethal to larvae of O. sulcatus when applied to potting compost in the absence of plants. Similarly, strawberry plants infected with 0. sulcaitfi larvae were protected from damage by applications of both cell suspensions of the bacteria and solutions of their cell-free toxic metabolites, indicating that it is the protein toxins, which are responsible for the lethal effects observed. These toxic metabolites were found more effective against 0. sulccitus larvae when treated in soil microflora. Insect mortality is increased by increasing temperature and bacterial concentration. The toxins remained pathogenic for several months when stored in potting soil either at 15 or 20°C, however, bacterial cells were not as persistent as the toxins. It is therefore suggested that these bacteria and their toxic metabolites can he applied in soil for insect pest control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhizoctonia solani is a causal agent of damping-off of may cultivated plants. An isolate of the bacterium Pseudomonas oryzihabitans, symbiotically associated with the entomopathogenic nematode Steinernema abbasi, strongly inhibited the pathogen in vitro. The bacterium was firmly attached onto fungus mycelia and degraded the cell walls of the pathogen. In greenhouse experiments, bacterial suspension in sterile water applied in the soil, effectively controlled damping-off of radish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several in vitro and in vivo experiments were conducted to develop an effective technique for culturing potential fungal antagonists (isolates of Trichoderma harzianum, Dactylium dendroides, Chaetomium olivaceum and one unidentified fungus) selected for activity against Armillaria mellea. The antagonists were inoculated onto (1) live spawn of the oyster mu shroom (Pleurotus ostreatus), (2) extra-moistened or sucrose-enriched mushroom composts containing living or autoclaved mycelia of P. ostreatus or Agaricus bisporus (button mushroom), (3) pasteurized compost with or without A. bisporus mycelium, wheat bran, wheat germ and (4) spent mushroom composts with living mycelia of A. bisporus, P. ostreatus or Lentinus edodes (the Shiitake mushroom). In one experiment, a representative antagonist (isolate Th2 of T. harzianum) was grown together with the A. bisporus mycelium, while in another one, the antagonist was first grown on wheat germ or wheat bran and then on mushroom compost with living mycelium of A. bisporus. Some of the carrier substrates were then added to the roots of potted strawberry plants in the glasshouse to evaluate their effectiveness against the disease. The antagonists failed to grow on the spawn of P. ostreatus even after reinoculations and prolonged incubation. Providing extra moisture or sucrose enrichment also did not improve the growth of Th2 on mushroom composts in the presence of living mycelia of A. bisporus or P. ostreatus. The antagonist, however, grew rapidly and extensively on mushroom compost with autoclaved mycelia, and also on wheat germ and wheat bran. Colonization of the substrates by the antagonist was positively correlated with its effectiveness in the glasshouse studies. Whereas only 33.3% of the inoculated control plants survived in one experiment monitored for 560 days, 100% survival was achieved when Th2 was applied on wheat germ or wheat bran. Growth of the antagonist alone on pasteurized or sterilized compost (without A. bisporus mycelia) and simultaneous growth of the antagonist and mushroom on pasteurized compost did not improve survival over the inoculated controls, but growth over mushroom compost with the living mycelium resulted in 50% survival rate. C. olivaceum isolate Co was the most effective, resulting in overall survival rate of 83.3% compared with only 8.3% for the inoculated and 100% for the uninoculated (healthy) controls. This antagonist gave the highest survival rate of 100% on spent mushroom compost with L. edodes. T harzianum isolate Th23, with 75% survival rate, was the most effective on spent mushroom compost with P. ostreatus, while D. dendroides isolate SP resulted in equal survival rates of 50% on all the three mushroom composts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic farming has increased in popularity in recent years, primarily as a response to the perceived health and conservation benefits. While it is likely that conventional farming will be able to respond rapidly to variations in pest numbers and distribution resulting from climatic change, it is not clear if the same is true for organic farming. Few studies have looked at the responses of biological control organisms to climate change. Here, I review the direct and indirect eects of changes in temperature, atmospheric carbon dioxide and other climatic factors on the predators, parasitoids and pathogens of pest insects in temperate agriculture. Finally, I consider what research is needed to manage the anticipated change in pest insect dynamics and distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arthropods that have a direct impact on crop production (i.e. pests, natural enemies and pollinators) can be influenced by both local farm management and the context within which the fields occur in the wider landscape. However, the contributions and spatial scales at which these drivers operate and interact are not fully understood, particularly in the developing world. The impact of both local management and landscape context on insect pollinators and natural enemy communities and on their capacity to deliver related ecosystem services to an economically important tropical crop, pigeonpea was investigated. The study was conducted in nine paired farms across a gradient of increasing distance to semi-native vegetation in Kibwezi, Kenya. Results show that proximity of fields to semi-native habitats negatively affected pollinator and chewing insect abundance. Within fields, pesticide use was a key negative predictor of pollinator, pest and foliar active predator abundance. On the contrary, fertilizer application significantly enhanced pollinator and both chewing and sucking insect pest abundance. At a 1 km spatial scale of fields, there were significant negative effects of the number of semi-native habitat patches within fields dominated by mass flowering pigeonpea on pollinators abundance. For service provision, a significant decline in fruit set when insects were excluded from flowers was recorded. This study reveals the interconnections of pollinators, predators and pests with pigeonpea crop. For sustainable yields and to conserve high densities of both pollinators and predators of pests within pigeonpea landscapes, it is crucial to target the adoption of less disruptive farm management practices such as reducing pesticide and fertilizer inputs.